Position-Time Graphs

Suppose that a man is jogging at a constant velocity of 5.0 m/s. A data table representing the man's motion is shown below:

Time (s)	Position (m)
0	0
1.0	5.0
2.0	10.0
3.0	15.0
4.0	20.0
5.0	25.0

If we plot this data on a graph, we get:

A graph that shows how position varies with time is known as a **position-time graph**. This type of graph is very useful, as there is a great deal of information you can get from the graph, either directly or indirectly.

Some of the things you can determine directly from a graph of position versus time include:

- describing the motion of the object
 - based on the shape of the graph
- determining the position at a given time
 - by reading the graph
- determine the time when the object was at a given position
 - \circ by reading the graph

Some of the things you can determine indirectly — that is, by doing some calculations — from a position-time graph include:

- determining the distance traveled
- determining the displacement for an interval of time
 subtract the starting position from the ending position
- determining the velocity of the object at a given instant (instantaneous velocity)
 - slope of the graph at that instant
 - o if the graph is curved, use a **tangent line** to find the slope
- determining the velocity of the object over a given time interval (average velocity)
 - slope of the chord joining the point on the graph at the start of the interval to the point on the graph at the end of the interval

Example 1

Use the position-time graph below to answer the questions. Note: Right is the positive direction.

Time (s)

1. Describe the motion of the object.

- 2. What is the position of the object at $t = 30 \ s$?
- 3. At what time is the object 100 m to the right of the starting position?
- 4. What is the total distance the object moved?
- 5. What is the object's net displacement?
- 6. What is the object's velocity at t = 30 s?
- 7. What is the average velocity of the object from t = 10 s to t = 45 s?

Position-Time Graph Worksheet

The position-time graph below represents the motion of a remote-controlled toy truck as it moves back and forth along a straight line path. The origin marks the position of the boy who controls the truck. A positive position is to the right of the boy, and a negative position is to the left of the boy.

	e) not moving?			
2.	What is the position of the truck at			
	a) 0 seconds?	c) 30 seconds?		
	b) 15 seconds?	d) 45 seconds?		
3.	How far did the truck travel during the following time intervals?			
	a) 0–10 s	d) 25–35 s		
	b) 10–15 s	e) 35–40 s		
	c) 15–25 s	f) 40–50 s		
4.	What was the displacement of the truck during the following intervals?			
	a) 0–10 s	d) 25–35 s		
	b) 10–15 s	e) 35–40 s		
	c) 15–25 s	f) 40–50 s		
5.	Average speed is given by the distance traveled divided by the time interval. Calculate th average speed for each interval.			
	a) 0–10 s	d) 25–35 s		

a)	0–10 s	d) 25–35 s	
b)	10–15 s	e) 35–40 s	
c)	15–25 s	f) 40–50 s	

6. Average velocity is given by the displacement of the truck divided by the time interval. It can also be determined by calculating the slope of the line segment on a position-time graph. Calculate the average velocity for each time interval by calculating the slope.

$\mathbf{Run} = \Delta t$ Time Interval	$\mathbf{Rise} = \Delta d$ Displacement	Slope = v Velocity

- 7. How do the signs of the velocities in #6 compare to the direction of motion in #1?
- 8. In terms of the truck's motion,
 - a) what does a negative velocity mean?

- b) what does a positive velocity mean?
- c) what does a velocity of zero mean?